How To Replace Values In A Column If Another Column Is A Nan?
So this should be the easiest thing on earth. Pseudocode: Replace column C with NaN if column E is NaN I know I can do this by pulling out all dataframe rows where column E is NaN
Solution 1:
Use np.where
:
In [34]:
dfz['C'] = np.where(dfz['E'].isnull(), dfz['E'], dfz['C'])
dfz
Out[34]:
A B C D E
01111221000015200 NaN 0 NaN
3111110400 NaN 0 NaN
50110557
Or simply mask the df:
In [38]:
dfz.loc[dfz['E'].isnull(), 'C'] = dfz['E']
dfz
Out[38]:
A B C D E
01111221000015200 NaN 0 NaN
3111110400 NaN 0 NaN
50110557
Post a Comment for "How To Replace Values In A Column If Another Column Is A Nan?"