Computing The Distance To A Convex Hull
I am using the ConvexHull class of scipy to construct a convex hull for a set of points. I am interested in a way to compute the minimum distance of a new point P from the convex h
Solution 1:
if the points of the convex hull are given as a NX2 array and the point is given as p=[x,y]
import math
#from http://stackoverflow.com/questions/849211/shortest-distance-between-a-point-and-a-line-segment
def dist(x1,y1, x2,y2, x3,y3): # x3,y3 is the point
px = x2-x1
py = y2-y1
something = px*px + py*py
u = ((x3 - x1) * px + (y3 - y1) * py) / float(something)
if u > 1:
u = 1
elif u < 0:
u = 0
x = x1 + u * px
y = y1 + u * py
dx = x - x3
dy = y - y3
# Note: If the actual distance does not matter,
# if you only want to compare what this function
# returns to other results of this function, you
# can just return the squared distance instead
# (i.e. remove the sqrt) to gain a little performance
dist = math.sqrt(dx*dx + dy*dy)
return dist
dists=[]
for i in range(len(points)-1):
dists.append(dist(points[i][0],points[i][1],points[i+1][0],points[i+1][1],p[0],p[1]))
dist = min(dists)
Post a Comment for "Computing The Distance To A Convex Hull"