Skip to content Skip to sidebar Skip to footer

Converting An Image To Grayscale Using Numpy

I have an image represented by a numpy.array matrix nxm of triples (r,g,b) and I want to convert it into grayscale, , using my own function. My attempts fail converting the matrix

Solution 1:

Here is a working code:

def grayConversion(image):
    grayValue = 0.07 * image[:,:,2] + 0.72 * image[:,:,1] + 0.21 * image[:,:,0]
    gray_img = grayValue.astype(np.uint8)
    return gray_img

orig = cv2.imread(r'C:\Users\Jackson\Desktop\drum.png', 1)
g = grayConversion(orig)

cv2.imshow("Original", orig)
cv2.imshow("GrayScale", g)
cv2.waitKey(0)
cv2.destroyAllWindows()

Solution 2:

You can use a dot product:

gray_image = image.dot([0.07, 0.72, 0.21])

Or even just do the whole operation manually:

b = image[..., 0]
g = image[..., 1]
r = image[..., 2]
gray_image = 0.21 * r + 0.72 * g + 0.07 * b

Don't forget to convert back to 0-255:

gray_image = np.min(gray_image, 255).astype(np.uint8)

Solution 3:

Solution using apply_along_axis

A solution can be achieved by using apply_along_axis:

import numpy as np
def grayscale(colors):
    """Return grayscale of given color."""
    r, g, b = colors
    return 0.07 * r + 0.72 * g + 0.21 * b

image = np.random.uniform(255, size=(10,10,3))
result = np.apply_along_axis(grayscale, 2, image)

Examples

10x10 image

We can now proceed to visualise the results:

from matplotlib import pyplot as plt
plt.subplot(1,2,1)
plt.imshow(image)
plt.subplot(1,2,2)
plt.imshow(result, cmap='gray')

Example results

Textual example (2x2 image)

To visualise the actual results in text I will use a smaller array, just a 2x2 image:

image = np.random.uniform(250, size=(2,2,3))

The content is:

array([[[205.02229826, 109.56089703, 163.74868594],
    [ 11.13557763, 160.98463727, 195.0294515 ]],

   [[218.15273335,  84.94373737, 197.70228018],
    [ 75.8992683 , 224.49258788, 146.74468294]]])

Let's convert it to grayscale, using our custom function:

result = np.apply_along_axis(grayscale, 2, image)

And the output of the conversion is:

array([[127.62263079, 157.64461409],
   [117.94766108, 197.76399547]])

We can visualise this simple example too, using the same code as above:

Smaller example

Further suggestions

If you want to apply your own custom function, then apply_along_axis is the way to go, but you should consider using purer numpy approaches such as the one suggested by Eric or, if possible, just load the black and white image using cv2 option:

cv2.imread('smalltext.jpg',0)

Post a Comment for "Converting An Image To Grayscale Using Numpy"