Customize Keras' Loss Function In A Way That The Y_true Will Depend On Y_pred
I'm working on a multi-label classifier. I have many output labels [1, 0, 0, 1...] where 1 indicates that the input belongs to that label and 0 means otherwise. In my case the los
Solution 1:
I believe this is what you looking for.
import theano
from keras import backend as K
from keras.layers import Dense
from keras.models import Sequential
def customized_loss(y_true, y_pred):
loss = K.switch(K.equal(y_true, -1), 0, K.square(y_true-y_pred))
return K.sum(loss)
if __name__ == '__main__':
model = Sequential([ Dense(3, input_shape=(4,)) ])
model.compile(loss=customized_loss, optimizer='sgd')
import numpy as np
x = np.random.random((1, 4))
y = np.array([[1,-1,0]])
output = model.predict(x)
print output
# [[ 0.47242549 -0.45106074 0.13912249]]
print model.evaluate(x, y) # keras's loss
# 0.297689884901
print (output[0, 0]-1)**2 + 0 +(output[0, 2]-0)**2 # double-check
# 0.297689929093
Post a Comment for "Customize Keras' Loss Function In A Way That The Y_true Will Depend On Y_pred"