Skip to content Skip to sidebar Skip to footer

Estimate Exponential Cutoff In A Power Law Distribution

As I have been doing some social network analysis, I have stumbled upon the problem of fitting a probability distribution on network degree. So, I have a probability distribution P

Solution 1:

Powerlaw library can directly be used to estimate the parameters as follows:

  1. Install all the pythons dependencies:

    pip install powerlaw mpmath scipy
    
  2. Run the powerlaw package fit in a python environment:

    import powerlaw
    data = [5, 4, ... ]
    results = powerlaw.Fit(data)
    
  3. get the parameters from the results

    results.truncated_power_law.parameter1 # power law  parameter (alpha)
    results.truncated_power_law.parameter2 # exponential cut-off parameter (beta)

Solution 2:

The function scipy.stats.powerlaw.fit may still work for your purposes. It's a bit confusing how the distributions in scipy.stats work (the documentation for each one refers to the optional parameters loc and scale, even though not all of them use these parameters, and each uses them differently). If you look at the docs:

http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.powerlaw.html

there's also a second non-optional parameter "a", which is the "shape parameters". In the case of powerlaw, this contains a single parameter. Don't worry about "loc" and "scale".

Edit: Sorry, forgot that you wanted the beta parameter too. Your best best may be to define the powerlaw function you want yourself, and then use scipy's generic fitting algorithms to learn the parameters. For example: http://www.scipy.org/Cookbook/FittingData#head-5eba0779a34c07f5a596bbcf99dbc7886eac18e5

Solution 3:

Here is a means of estimating the scaling exponent and exponential rate of power law with exponential cut-off by maximizing likelihood in R:

# Input: Data vector, lower threshold# Output: List, giving type ("powerexp"), scaling exponent, exponential rate, lower threshold, log-likelihood


powerexp.fit <-function(data,threshold=1,method="constrOptim",initial_rate=-1){
  x <- data[data>=threshold]
  negloglike <-function(theta){-powerexp.loglike(x,threshold,exponent=theta[1],rate=theta[2])}# Fit a pure power-law distribution
  pure_powerlaw <- pareto.fit(data,threshold)# Use this as a first guess at the exponent
  initial_exponent <- pure_powerlaw$exponent
  if(initial_rate <0){ initial_rate <- exp.fit(data,threshold)$rate }
  minute_rate <- 1e-6
  theta_0 <- as.vector(c(initial_exponent,initial_rate))
  theta_1 <- as.vector(c(initial_exponent,minute_rate))switch(method,
    constrOptim ={# Impose the constraint that rate >= 0# and that exponent >= -1
      ui <- rbind(c(1,0),c(0,1))
      ci <-c(-1,0)# Can't start with values on the boundary of the feasible set so add# tiny amounts just in caseif(theta_0[1]==-1){theta_0[1]<- theta_0[1]+ minute_rate}if(theta_0[2]==0){theta_0[2]<- theta_0[2]+ minute_rate}
      est <- constrOptim(theta=theta_0,f=negloglike,grad=NULL,ui=ui,ci=ci)
      alpha <- est$par[1]
      lambda <- est$par[2]
      loglike <--est$value},
    optim ={
      est <- optim(par=theta_0,fn=negloglike)
      alpha <- est$par[1]
      lambda <- est$par[2]
      loglike <--est$value},
    nlm ={
      est.0 <- nlm(f=negloglike,p=theta_0)
      est.1 <- nlm(f=negloglike,p=theta_1)
      est <- est.0
      if(-est.1$minimum >-est.0$minimum){ est <- est.1;cat("NLM had to switch\n")}
      alpha <- est$estimate[1]
      lambda <- est$estimate[2]
      loglike <--est$minimum},{cat("Unknown method",method,"\n"); alpha<-NA; lambda<-NA; loglike<-NA})
  fit <-list(type="powerexp", exponent=alpha, rate=lambda, xmin=threshold,
              loglike=loglike, samples.over.threshold=length(x))return(fit)}

Check out https://github.com/jeffalstott/powerlaw/ for more info

Post a Comment for "Estimate Exponential Cutoff In A Power Law Distribution"