Geodesic Distance Transform In Python
Solution 1:
First of all, thumbs up for a very clear and well written question.
There is a very good and fast implementation of a Fast Marching
method called scikit-fmm
to solve this kind of problem. You can find the details here:
http://pythonhosted.org//scikit-fmm/
Installing it might be the hardest part, but on Windows with Conda its easy, since there is 64bit Conda package for Py27: https://binstar.org/jmargeta/scikit-fmm
From there on, just pass your masked array to it, as you do with your own function. Like:
distance = skfmm.distance(m)
The results looks similar, and i think even slightly better. Your approach searches (apparently) in eight distinct directions resulting in a bit of a 'octagonal-shaped` distance.
On my machine the scikit-fmm implementation is over 200x faster then your function.
Solution 2:
64-bit Windows binaries for scikit-fmm are now available from Christoph Gohlke.
Solution 3:
A slightly faster (about 10x) implementation that achieves the same result as your geodesic_distance_transform
:
def getMissingMask(slab):
nan_mask=numpy.where(numpy.isnan(slab),1,0)
if not hasattr(slab,'mask'):
mask_mask=numpy.zeros(slab.shape)
else:
if slab.mask.size==1 and slab.mask==False:
mask_mask=numpy.zeros(slab.shape)
else:
mask_mask=numpy.where(slab.mask,1,0)
mask=numpy.where(mask_mask+nan_mask>0,1,0)
return mask
def geodesic(img,seed):
seedy,seedx=seed
mask=getMissingMask(img)
#----Call distance_transform_edt if no missing----
if mask.sum()==0:
slab=numpy.ones(img.shape)
slab[seedy,seedx]=0
return distance_transform_edt(slab)
target=(1-mask).sum()
dist=numpy.ones(img.shape)*numpy.inf
dist[seedy,seedx]=0
def expandDir(img,direction):
if direction=='n':
l1=img[0,:]
img=numpy.roll(img,1,axis=0)
img[0,:]==l1
elif direction=='s':
l1=img[-1,:]
img=numpy.roll(img,-1,axis=0)
img[-1,:]==l1
elif direction=='e':
l1=img[:,0]
img=numpy.roll(img,1,axis=1)
img[:,0]=l1
elif direction=='w':
l1=img[:,-1]
img=numpy.roll(img,-1,axis=1)
img[:,-1]==l1
elif direction=='ne':
img=expandDir(img,'n')
img=expandDir(img,'e')
elif direction=='nw':
img=expandDir(img,'n')
img=expandDir(img,'w')
elif direction=='sw':
img=expandDir(img,'s')
img=expandDir(img,'w')
elif direction=='se':
img=expandDir(img,'s')
img=expandDir(img,'e')
return img
def expandIter(img):
sqrt2=numpy.sqrt(2)
tmps=[]
for dirii,dd in zip(['n','s','e','w','ne','nw','sw','se'],\
[1,]*4+[sqrt2,]*4):
tmpii=expandDir(img,dirii)+dd
tmpii=numpy.minimum(tmpii,img)
tmps.append(tmpii)
img=reduce(lambda x,y:numpy.minimum(x,y),tmps)
return img
#----------------Iteratively expand----------------
dist_old=dist
while True:
expand=expandIter(dist)
dist=numpy.where(mask,dist,expand)
nc=dist.size-len(numpy.where(dist==numpy.inf)[0])
if nc>=target or numpy.all(dist_old==dist):
break
dist_old=dist
return dist
Also note that if the mask forms more than 1 connected regions (e.g. adding another circle not touching the others), your function will fall into an endless loop.
UPDATE:
I found one Cython implementation of Fast Sweeping method in this notebook, which can be used to achieve the same result as scikit-fmm
with probably comparable speed. One just need to feed a binary flag matrix (with 1s as viable points, inf
otherwise) as the cost to the GDT()
function.
Post a Comment for "Geodesic Distance Transform In Python"